Физические постоянные - Definition. Was ist Физические постоянные
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Физические постоянные - definition

Фундаментальные физические константы; Фундаментальная физическая константа; Фундаментальная физическая постоянная; Физические постоянные; Электрическая константа; Универсальные физические постоянные; Физические константы; Физическая константа; Фундаментальные константы; Мировые постоянные; Константы физические; ФФП; Физические фундаментальные константы

Физические постоянные         

физические константы, фундаментальные постоянные, мировые постоянные, численные коэффициенты, входящие в уравнения физических законов и являющиеся в ряде случаев масштабными характеристиками физических процессов и микрообъектов. К Ф. п. относятся: Скорость света, Планка постоянная, заряд электрона, постоянные тонкой структуры, Авогадро, Ридберга и т.д. В число Ф. п. входят как независимые постоянные, так и их комбинации (например, постоянная тонкой структуры , где е - заряд электрона, ħ - постоянная Планка, с - скорость света). Численные значения Ф. п. или их комбинаций находят на основе экспериментальных измерений и выражают в единицах какой-либо системы единиц (См. Система единиц). Получение из данных измерений наиболее точных и надёжных значений для всей совокупности Ф. п. называется согласованием Ф. п. Согласование включает анализ погрешностей измерений (См. Погрешности измерений), определение надёжности измерений и вычисление наиболее согласующихся значений Ф. п. (Наименьших квадратов методом).

С развитием техники физического эксперимента и физических теорий значения Ф. п. непрерывно уточняются, т.к. появляются новые экспериментальные и теоретические возможности определения Ф. п. Так, например, открытие Джозефсона эффекта позволило с высокой точностью измерить отношение e/h и существенно уточнить многие Ф. п. В табл. приведены рекомендуемые согласованные значения Ф. п. по состоянию на 1976.

Рекомендуемые согласованные значения фундаментальных констант

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| | | | Средняя |

| Величина | Обозначение | Значение указанием средней | квадратическая |

| | | квадратической погрешности)* | погрешность, 10 |

| | | | -4\% |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Скорость света в вакууме | c | 299792458(1,2) м×с-1 | 0,004 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Постоянная тонкой структуры | α | 0,0072973506(60) | 0,82 |

| | α-1 | 137,03604(11) | 0,82 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Элементарный заряд | e | 1,6021892(46) ․10-19 К | 2,9 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Постоянная Планка | h | 6,626176(36) ․10-34 Джс | 5,4 |

| | ћ=h/2π | 1,0545887(57) ․10-34 Джс | 5,4 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Постоянная Авогадро | NA | 6,022045(31) ․1023 моль-1 | 5,1 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Масса покоя электрона | me | 0,9109534(47) ․10-30 кг | 5,1 |

| | | 5,4858026(21) ․10-4 а. е. м. | 0,38 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Отношение заряда электрона к его массе | e/me | 1,7588047(49) ․10-11 к/кг-1 | 2,8 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Масса покоя мюона | mm | 1,883566(11) ․10-28 кг | 5,6 |

| | | 0,11342920(26) а. е. м. | 2,3 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Масса покоя протона | mp | 1,6726485(86) ․10-27 кг | 5,1 |

| | | 1,007276470(11) а. е. м. | 0,011 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Масса покоя нейтрона | mn | 1,6749543(86) ․10-27 кг | 5,1 |

| | | 1,008665012(37) а. е. м. | 0,037 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Постоянная Фарадея | F = NAe | 9,648456(27) ․104 к/моль | 2,8 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Квант магнитного потока | Ф0 = h/2e | 2,0678506(54) ․10-15 вб | 2,6 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Постоянная Ридберга | R | 1,097373177(83) ․10-7 м-1 | 0,075 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Радиус Бора | a0 = α/4 πR | 0,52917706(44) ․10-10 м | 0,82 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Комптоновская длина и- волны электрона | λc = α2/2R | 2,4263089(40) ․10-12 м | 1,6 |

| | λc/135 | 3,8615905(64) ․10-13 м | 1,6 |

| | π = αa0 | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ядерный магнетон | μN =eћ/2mp | 5,050824(20) ․10-27 Дж×Тл-1 | 3,9 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Магнетон Бора | μB =eћ/2me | 9,274078(36) ․10-24 Дж×Тл-1 | 3,9 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Магнитный момент электрона в магнетонах | μeB | 1,0011596567(35) | 0,0035 |

| Бора | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Магнитный момент протона в ядерных | μπ/mN | 2,7928456(11) | 0,38 |

| магнетонах | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Магнитный момент электрона | μe | 9,284832(36) ․10-24 Дж×Тл-1 | 3,9 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Магнитный момент протона | μp | 1,4106171(55) ․10-26 ДжТл-1 | 3,9 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Магнитный момент протона в магнетонах | μp/μN | 1,521032209(16) ․10-3 | 0,011 |

| Бора | | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Гиромагнитное отношение для протона | γp | 2,6751987(75) ․108 с-1 Тл-1 | 2,8 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Универсальная газовая постоянная | R | 8,314441(26) Дж/(К ×моль) | 31 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Постоянная Больцмана | k = R/NA | 1,380662(44) ․10-23 Дж/К | 32 |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Постоянная Стефана - Больцмана | σ = 2/60) k4/ ћ | 5,67032(71) ․10-8 Вт м-2 ․К-4 | 125 |

| | 3c2 | | |

|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Гравитационная постоянная | G | 6,6720(41) ․10-11 Н м2/кг2 | 615 |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* Значения Ф. п. даны в единицах Международной системы единиц (См. Международная система единиц) (СИ). Число в скобках после численного значения величины указывает среднюю квадратическую погрешность (Квадратичное отклонение) значения в его последних значащих цифрах.

Уточнение значений Ф. п. необходимо для проверки физических теорий - сравнения предсказаний теории с экспериментальными данными.

Многие измерения в современной физике и технике также требуют знания точных значений Ф. п. (например, скорости света в радиолокационных измерениях). Наконец, в метрологии точные значения Ф. п. необходимы для разработки воспроизводимых эталонов (См. Эталоны) единиц физических величин.

Лит.: Тейлор Б., Паркер В., Лангенберг Д., Фундаментальные константы и квантовая электродинамика, пер. с англ., М., 1972; Рекомендуемые согласованные значения фундаментальных физических постоянных - 1973, "Успехи физических наук", 1975, т, 115, в. 4; Табл. стандартных справочных данных. Фундаментальные физические константы, М., 1976.

Л. Г. Асламазов.

Фундаментальные физические постоянные         
Фундамента́льные физи́ческие постоя́нные — постоянные величины, входящие в уравнения, описывающие фундаментальные законы природы и свойства материиФундаментальные физические константы // Физическая энциклопедия, т. 5. М.: Большая Российская энциклопедия, 1998, с. 381—383.. Фундаментальные физические постоянные возникают в теоретических моделях наблюдаемых явлений в виде универсальных коэффициентов в соответствующих математических выражениях.
МИРОВЫЕ ПОСТОЯННЫЕ         
см. Физические константы.

Wikipedia

Фундаментальные физические постоянные

Фундамента́льные физи́ческие постоя́нные — постоянные величины, входящие в уравнения, описывающие фундаментальные законы природы и свойства материи. Фундаментальные физические постоянные возникают в теоретических моделях наблюдаемых явлений в виде универсальных коэффициентов в соответствующих математических выражениях.

Beispiele aus Textkorpus für Физические постоянные
1. Кроме того, их технология может помочь ученым-теоретикам, исследующим свойства антиматерии, и даст возможность уточнить физические постоянные.
2. Холла и Ханша премировали "за вклад в развитие лазерной спектроскопии, и в частности - за методы комбинационной лазерной спектроскопии в оптическом диапазоне". Эксперты говорят, что разработанный ими метод считается самым точным из возможных физических измерений: он сделал возможным измерять колебания с точностью до 15 цифр, и его используют, чтобы следить, не изменяются ли фундаментальные физические постоянные с течением времени.